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THE STEADY MOTION OF A SYMMETRICAL 

OBSTACLE ALONG THE AXIS OF A 

ROTATING FLUID 

ABSTRACT "-•- 

| 

An investigation by G. I. Taylor of the steady motion of an obstacle along 

the axis of a rotating fluid, is extended in the following paper. It is shown 

that Taylor's particular solution is just one of an infinity of functions 

comprising the general solution. 

The theory is applied to motions in a rotating cylinder of fluid. A 

critical Rossby number is derived, below which the flow around the obstacle is 

wave-like. When the Rossby•number is greater than the critical value, the flow 

consists only of a local perturbation that dies out rapidly on both sides of the 

obstacle. Various other critical numbers exist, below which additional modes 

of oscillation become dynamically possible.        :: 

An experiment was designed to test the theoretical results of this paper. 

An obstacle was moved along the axis of a long cylinder of rotating water. The 

resulting flow patterns were observed visually and photographically. The three- 

dimensional wave motions which occurred in the experiment were unquestionably 

the same as those in the theoretical solution. 
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:•£ STEADY "OTIOH Or A 3Y:~ "ETHICAL OBSTACLE ALONG 
THE AXIS CF A RCTATIFG r'l.UID 
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1.     Introduction 

In a series  of naper3 written a number of year3 ago, Taylor   (1°<2C,  1922, 

1923),  Proudnan  (1916), and Grace  (1922,  1923,  1924,  1926)  investigated the 

oroblem of the motion of a perfect, rotating fluid around obstacles  (esneclally 

spheres).    This work has acquired renewed  interest in the  recent work of "organ 

(1951) end Stewartson (1952). 

With the exception of Taylor,  the nroblera is of acadeoic  interest alone 

to the above authors.    Indeed,   it represents a  fascinating challenge   for the 

extension of the  investigations of classical  hydrodynamics to an area that is 

almost unexplored.    If the oroblem had no other  importance,  the  present paoer 

should,  no doubt, have been submitted to the Proceedings of the Royal  Society 

of London in which alifost all  of the above researches have aopeared.     It is 

almost obvious that this is not,  or should not be,  the case.    Certainly all 

meteorologists are agreed  that the moderate and large-scale motions  of the 

atmosphere are orofoundly influenced by the vorticity of the earth's rotation. 

It would  seem to be evident,  then,  that efforts to understand these  phenomena 

should begin with studies of flow of a rotating fluid around elementary bodies. 

The motion of an lrrotational  liquid ..: ^>ind a sohere  is discussed in an early 

chapter of I-amb's Hydrodynamics, and Stokes'   solution for viscous flow around a 

sphere was one  of the  first investigations based on the Kavier-Stokes equations 

of motion. 

It is unfortunate  that basic investir»tions of a rotating fluid are  infre- 

quent in meteorological literature.    The resulting lack of knowledge of the most 

fundamental effects of rotation on fluid motions has  been a distinct handicap in 

current efforts to produce laboratory models of atmospheric phenomena.    These 

difficulties are discussed in a series of papers (Long, 1951, Long, 1952a, Fultz 

and Long, 1951). 

>rf .** *-•- 
-*.- • 



r, 
- 3 - 

One of the most interesting of these basic rroblem3 to a •oeteorologist is the 

motion of an obstacle  in a rotating fluid in a direction -crnenuicular  to the axis 

of rotation.    This motion would  nave  analogies  to the effect  of Tiountain  barriers 

on the 6ver-present zonal  currents in the earth's atmosphere. 

Efforts in this direction have not oroved to be particularly successful, 

however,  since the analysis is very complicated.    The steady motion of a  sohere 

along the axis of a rotating fluio, as analysed by Taylor  (1922),  is simpler and 

his results were the only ones that d'd riot require the assumption of infinitesimally 

small motions.    As shown below, Taylor's solution is only one of an infinite  sum of 

functions which comprise the general  solution, and he was unable,   therefore,  to 

obtain a physically realizable  flow oattcrn.     In the oresent oaper,  section 2 is 

devcted tc a further theoretical aiscussion of this problem.    An experiment to test 

the  theory is described in section 3. 

2.    General  solution 

Figure 1  is a sketch of the coordinate system used  in the  theoretical develop- 

ment of the  flow around a symmetrical obstacle moving steadily along the axis of a 

rotating fluid.    The x-axls is along the axis of rotation, tnd velocities in this 

direction are denoted by u.    The coranonent of the velocity outward is v, and w is 

the component of the absolute velocity tangent to circles with centers on the 

x-axis.    The center of the coordinate system is assuraed to move with the obstacle 

at a speed uQ,  so that the  flew with respect to this  frame  is steady.    Obviously, 

this requires the additional  assumption that the  fluid extends to infinity in both 

directions along the axis of rotation. 

The velocity ccr.oonents are 

dx do 
'dt dt WI/>dt ' 

(l) 

L 
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Pig.  1—Coordinate system. 
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and the  individual  tine derivative  is 

did 
—«u—•v— 
dt       dx       dfi 

(2) 

In (2)  the Dartial derivative with resoect tc time  is missing because of the a8sw>»d 

steady state.    The derivative with resnect to   ^    13 also zero since  the motion will 

ho symmetrical  about the x-axis  .    The equations of motion and continuity for an 

incompressible,  homogeneous  fluid are 

dv    w* __£,£_ 
dt    p       dp   q 

du      do 

dw    w v 
— • —=0 
dt      p 

du   dv   v 
— + — + —* 0 
dx  dp    p 

(3) 

(4) 

(5) 

(6) 

where q is the  (constant) density, and    X    ^s tne potential of the external  forcea 

(gravity).    The c-quation of continuity,   (6), reveala that we nay express the velocity 

ccnDonfcnts,  u, v,  by a stream function,     <Mx, p ), as follows: 

I   d± \   d± 
p dp p dx 

(7) 

Equations (2) and (7) show that, if a quantity is indi/idually conserved during the 

motion, it is then e function only of the stream function, ^  . Combining terms 

1  This may be inferred from the fact that the equations cf motion and continuity, 
and the kinematic boundary conditions are invariant for trans formations of ^ 
to ^ ' «• const. This apDlication of group theory (Birkhoff, 1950) is almost 
trivial in this case. 

.-i.1 
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in (5) we find that 

We determine the unknown function, g( ^ ), by assuming that at a sufficiently- 

great distance ahead of the obstacle the perturbed motion vanishes. This requires 

2 " that g( ^ ) = SI  p_     ,  where p     is the undisturbed distance of the stream line 

•— • 2 
from the axis of rotation. Similarly, Trom (7), i>   = -u p     /Z  in a Lagrangian 

o  o  .•_.__ 

(9) 

dx dp- '•<*>)• 

and .eliminate the-^ight hand sides of (3) and (4.) by cross differentiation, we 

obtain    \- '"•••. ' ~M 

sense. Combining thes ;s results, 

•".  -V ~ 
"-'-        "'-      -f '-.. IS 

'.if we define the following quantity: 

e .$1- La. 

(n) 

or 

1^4*«HW. (12) 

Evaluating H( iff ) in a manner similar to the determination of g{ \ji  ) in (8), 

4^(**-»).0 (13) 
*>    r       Z   

The vorticity component, f , may be expressed It terms of   if/   by using (7) and (10). 

The following two equations then replace the original set (3)-(6): 

p*=~<r+ .._ (H) 

&3U**+^^2^ (15) 
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The general solution is 

I 
1 

z 
-P-- '**- ^ +/,|(Akcosks + 8ks.nkx}J![(<r

2-k2J2)5]  . 
(16) 

In this equation J-, is a Bessel function of the first kind. The Neumann function 

becomes infinite on the axis of rotation ( p  = 0) and hence is omitted. 

Equation (15) may also be expressed in snnferical coordinates by the relations 

(see fig 1), 

x=rcos0,   p=rsin9 . (17) 

The corresDOPding form of the solution is 

u6r
2sin,0 , 

iir =—" + 
n=i L 2 2      J 

i 
! 

The Bessel functions are those of the half-odd order and, as is well known, are 

expressible in te^ms of elementary functions (Margenau and Kurphy, 194-3). 
1 

P (cos 8  ) is an associated Legendre polynomial. The particular solution for 

n = 1 is the solution obtained by Taylor. 

Taylor experienced a difficulty in applying his one solution to the case of 

the flow around a sohere in a rotating fluid extending to infinity in all directions. 

The kinematic condition at the obstacle and the condition that the perturbation 

vanish at infinity determined only one of the two constants at his disposal, and 

he was left with an indeterminate problem. The fact that the present paper adds 

• 
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a new infinity of solutions would seem to be a further complication. Experience 

with other problems of a similar nature indicates that this is not the case 

(Rayleigh 1883, Lyra 194-3, Long 1952b). In these references fluid systems a^= 

considered in which obstacles set up waves in a current passing over or around 

them. In all eases the same indeterminacy is found. The first investigation of 

this phenomenon was made by Rayleigh, who discovered that the introduction of 

viscosity in the equations of motion removed the indeterminacy. Then, letting 

the frictional coefficient tend to zero, the solution is unique and involves a 

complete damping of the upstream waves, : The resulting asymptotic solution, 

called the "practical solution" by Lamb (1932), is the one that is realized in 

actual experiments (Bakhmeteff, 1932). Applying this to (18), all the remaining 
•- • v v   wf-.y 

constants would be required to annul the "upstream" oscillations. The experimental 

work described; in thi3 paper verifies that no waves occur in advance of the obstacle 

(see fig 9). 

Although (16) or (18) represents the general solution for the motion considered 

in this" paper, there are great difficulties in finding a solution that satisfies  ; 

all the conditions in a iglyen special case. Even for a sphere moving in an unlimited 

fluid the problem of choosing the coefficients of the Bessel functions in (18) so 

as to annul the•"upstream" waves, seems prohibitively complicated. If the cylinder 

has a finite radius, the difficulties are even greater. Yet the complete solution 

for a simple type of obstacle is greatly to be desired in order to ascertain its 

behavior as the parameter «r tends to infinity (i.e. u tends to zero). Taylor's 

experiments and those reported in this paper show that an obstacle, moving very 

slowly along the axis, pushes a column of fluid ahead of it with little disturbance 

in the fluid outside. This is one of the oeeuliarities in the behavior of a rotating 

liquid and should be carefully studied. 

A fairly good idea of the motion in a cylinder of radius b may be inferred from 

(16). The kinematic condition at the outer wall requires that the Bes3el function 
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hove a zero there,  sc tha* 

2 n»: *b 
(19) 

- 
<* 

! 

• ^^cosh^x +8nsmh v) J. 'V^"' < 

where e are the values of the arguments cf J.(z) when this function is zero, z 

is 3.^317, for exaaole, and the others are given in J«hnk& and Ernie (1945). The 

quantity k    is 

'. 

  

• 

si 

vl <*•-#*!. (20) 

and n    ij the lust integer for which   v>   s /b.    Since each of the functions of x 
. ——. J n 

in the second  summation of (19)  are non-oscillatory the sum must decrease steadily 

to zero in both directions.    This part of the solution,  therefore, represents a 

local oerturbetion near the obstacle that presumably dies out rapidly "upstream'' 

and "downstream."    Furthermore, if z      > a  b,  the first summation in (19)  is 

absent and the obstacle produces only a local disturbance.    If z   < <r b, waves 

will be produced of length, 

2*to x =-ri—r 
•»Vb"-# 

(21) 

'it is of interest to express the critical condition, dividing the oscillatory 

motion from the non-oscilletory type of flow, in terms of the Rossby number, 

R0 - Uj/2 ft b.    It :' s 

3.8317 
.261 . (22) 

!      -,i 
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In terras of this parameter the first mode  of oscillation has a length 

2Trb 

"(R*~!4.68)* 
(23) 

It is not surprising that for large Rossby numbers the obstacle should produce 

only a local perturbation. AE infinitely large R corresponds to a vanishing, basic 

angular velocity. The motion, therefore, should approach potential flow as R -*C0 . 

It is obvious from the differential equation (15) that it does so. 

The waves that occur when R < .261 are the subject of the experimental study 

described in the next section. Without solving for the motion around a given 

obstacle we cannot tell how the waves combine to give the total wave pattern. If~~ : . 

n. = 1, however, only one mode can exist, and, sufficiently far behind the obstacle, 

this wave should represent the only sensible disturbed motion^ -Using the second 

zero of the function J-^, the one-wave system should occur in the range, 

.14.2 <   R     <   .261. 
o (24) 

L 

A plot of the wave length vs. R- isr shown in fig 2, 

The above discussion has referred only to the component of the velocity in- 

planes through the axis of the cylinder.    The component, w, normal to these planes 

is given analytically in (14.)   or  (16).    Physically the meaning of (14)  is that 

each fluid ring (centered on the x-axis)  conserves its angular momentum during the 

motion.    Therefore, the ring slows down when expanding, and speeds up when con- 

tracting, i.e. when v is positive or negative respectively.    The result is a 

three-dimensional oscillation which has a phase difference of one-quarter wave 

length when projected on planes at right angles. 

.3.    Experiments 

Taylor's investigation of the problem of this paper included an experiment 

with a light sphere pulled along the axis of a rotating cylinder of water.    His   . ,_ 

results were very meager, however.    No definite wave motion was seen, probably 

"  ;V --.:   '^_ 
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because  re  u;ied such * 3mall obstacle tr.^t the waves were  not excited by the  forced 

perturbation.     In view of this deficiency, and of the  new theoretical  findings in 

section •>,   it sfraed advisable to ~aki.  a  further cxoerimer.ta]   study. 

The equionerst constructed  -'or  this work  is shovr  in  fU;  3.    The  lor.f; cylinder 

is 90  aa in length and has an inn»r    ia-*>ter of 29 cm.    The obstacle,  shown in 

position at the axis,  is a sohere with an attached cone to form a tapered trailing 

e.-*ge.    ''"he curiose of this is to ainir.ize the effect of boundary layer  seDaration. 

The spherical  head her a radius of 3.3 cir. and  the entire obstacle has an overfill 

length of 11.2 cm.    The cylinder is mounted  on a  turntable and rotated at a 

uniform speed  (usually 10 rpm).    "he water assumes the angular velocity of the 

vessel within e Period of 15-20 minutes.    The obstacle  is lowered by a raotor drive 

into the water and along the axis of the cylinder.    A scale,  parallel  to this axis, 

is placed just outside  of the cylinder to facilitate  the measurement of wave 

lengths.    In view of the dimensions used in fig 2,  this length scale  is in units 

of b,  the  inside radius of the vessel   (K.5 cm). 

The problem of observing the  flow in this exoerinent i3 complicated by the 

basic rotation and the  fact that the motions are  three-dimensional.    The most 

satisfactory tracer was a purple dye trail  left by a dissolving pellet of 

Dotasslum permanganate dropped into the water just before the descent of the 

obstacle along the axis.    These pellets, when drontsed in a cluster, leave a 

group of dye filaments which reaain parallel  to the axis of rotation until 

deformed by the Desssge of the obstacle.    Since the  filaments are material lines 

they are the stream lines of the motion relative  to a coordinate 3ystem moving 

with the obstacle and rotating with the cylinder.    Photopraohing th»oe lines 

necessarily projects tlje pattern on the plane of the camera but  the  wave length 

is preserved  by this Projection.    The three-dl:aen«lonr.lity of the motion is 

recorded by taking simultaneous pictures with two cameras at 90 deg-ees.    It did 

not seem to be necessary,  however,  to include both photographs in the  figures of 

this paper. 

''>*•; 
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?ig. 3—Experimental equipment. The long, glace 
cylinder is filled with water and rotated 
at a constant angular velocity. The obstacle 
is lowered at a uniforn sceed along the exis 
of rotation. 
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The behavior, of the dye T*llets, when dropping through the water, is somewhat 

erratic and there is considerable difficulty in following a given filament in a 

ohotograoh over an entire wave length. This lends some uncertainty to the 

determination of the wave length in most of the photographs. 

Visual observations of the motion around the obstacle confirmed immediately 

the preliminary theoretical deductions in section 2 of this paper. As the obstacle 

annroached a fluid ring, centered on the axis of rotation, it expanded to permit 

its passage around the barrier. The requirement for conservation of angular 

momentum caused it to lose some of its basic angular velocity as shown by the 

twisting of the dye filaments in a direction opposite to the basic rotation. In 

the lee of the obstacle the fluid ring performed a series of oscillations, expand- 

ing and contracting and losing and gaining some of its spin around its axis. 

Two complications have prevented a detailed comparison of observed and 

theoretical wave lengths. In the first place, the theoretical findings were 

"based on the assumption of an infinitely long cylinder. In the experiment the 

wave length is an appreciable fraction of the cylinder length. It appears from 

the observations that this causes a marked shortening of the wave nearest therfree 

surface. Secondly, in the vicinity of the obstacle a local, perturbation is added 

to the free wave motion. This causes the first measured wave length in the lee 

of the barrier to be somewhat longer than the theoretical length. These two 

factors make the measurement of the free wave length a subjective matter, 

especially for the longer waves. The experiments leave little doubt, however, 

that the observed waves are the same as the theoretical oscillations. This is 

shown rather convincingly in the ohotographs. 

figure 4 is a photograph of the wave motion at a low Hossby number (0.083). 

In this experiment, as well as in figs 5 and 6, ft is in a range where mcr? than 

one mode of oscillation is possible. Nevertheless, the wave lengths approach 

those given by equation (23). If the other nodes exist they must have very small 

_i 

j 
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amplitudes. Figures 7 and 8 have higher Rossby numbers and the waves are longer. 

VJave motion is still evident at Rossby numbers above 0.171 but they are so long 

that it is impossible to find one that is not affected by the local perturbation 

at the obstacle or by the oresence of the free surface. 

Figure 9 is a photograph showing the motion well ahead of the obstacle. 

As in all experiments, there is no wave motion "upstream." 

Finally brief mention may be made of the flow at very low Rossby numbers. 

If R is less than about 0.03 the exoeriments indicate that an obstacle pushes o 

a column cf fluid ahead of it as it moves along the axis. The radius of this 

column is indefinite but is somewhat smaller than the radius of the obstacle so 
• 

that seme fluid still flows around the barrier. When the fluid rings converge on 

the lee side a rather strong cyclonic vortex is formed there. Waves of small 

amplitude and very short wave length can still be seen on the "downstream" side 

of the obstacle. 
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Fig. U—Motion around an obstacle moving along the 
axis of rotation of a long, rotating cylinder 
of water.    The Rossby numoer of thio experircnt 
is 0.r33.    If the  first aode of oscillation is 
the  only one present,  the  theoretical length of 
the waves is O.S.Sb.    The waves bet-jeen the arrows 
have successive   lengths of,  atjnroximateiy, C.69b, 
0.63b, 0.61b, 0.57b, 0.53b. 
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Fig. 5—-'•'ave motion around an obstacle ir » long, 
rotating cylinder. The Rossby number in this 
experiment is 0.101. The theoretical wave 
length of the first mode of oscillation is 
0.69b. The wave3 between the arrows have 
successive lengths of 0.7Cb, 0.69b, 0.b9b. 

. - 
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fig. 6—>-'ave motion around en obstacle in a long, 
rotating cylinder.    Tb-c Russby number in this 
experiment is 0.138.       ne theoretical wave 
length of the  first node of oscillation is 
1.02b.    The waves beV--een the arrows have 
successive lenpths o!   "..25b arvi 1.02b. 
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Fig. 7—Wave motion around an obstacle in a long, 
rotating cylinder.    The Rossby number in this 
experiment is 0.153.    The theoretical wa\2 
length is 1.19b.    The waves between the arrows 
have successive lengths of 1.3Ab and 1.17b. 
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Fig.  8—Wave motion in a long, rotating cylinder 
of water.    The Rossby number it! this exper- 
iment is 0.371.    *he theoretical wave length 
is 1.4.2b.    The length of the wave between the 
arrows is clo.e to this value.    The shorten- 
ing of the waves near the  free surface is 
quite evident. 
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Pig. 9—Motion around an obstacle in a long, rotating 
cylinder of water. This photograph shows that 
no wave motion occurs ahead of the obstacle. 
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